

Welcome to Caerbannog’s !

Follow the white rabbit… at your own peril.

Contents:

	Object Oriented Turtle
	Client code

	Tootle code

	Tootle test

	Conclusion

	API

	Abstract Data Turtle
	Pythonic

	API

	Functional Turtle
	Pythonic

	Pure

	API

	Overall

	State Monad
	Problem upgrade

	Currying

	Pythonic

	Pure

	Monadic

	API

Various API documentation

Contents:

	Tootle API

	Abstle API

	Functle API

	Montle API

Indices and tables

	Index

	Module Index

	Search Page

Object Oriented Turtle

Data and behavior are combined into one object.
Client calls a turtle class instance. Turtle class needs to keep track of the Turtle ‘State’.

The state is defined here for simplicity as (position, angle, pen’s state - up or down).

In this design, the turtle class holds the turtle state and mutates it.
This makes it quite simple to wrap the python turtle API and even “extend” it.

Our tootle class has a few methods :
- move(distance)
- left(angle)
- right(angle)
- penup()
- pendown()

Side note : we use pint for unit of measure (radians / degrees)

Client code

The client code is quite simple.
We create a Tootle instance named ‘tt’

../01/client.py

	1
2
3

	def triangle():
 tt = tootle.Tootle()
 dist = 200

And we call Tootle’s methods to draw a triangle

../01/client.py

	1
2
3
4
5
6
7
8
9

	def triangle():
 tt = tootle.Tootle()
 dist = 200

 tt.move(dist)
 tt.left(120)
 tt.move(dist)
 tt.left(120)
 tt.move(dist)

Tootle code

The tootle code is usual object oriented code

We use an enum for the two possible penstate values, as well as having penstate as a type.

../01/tootle.py

	1
2
3
4

	# We use enum for simple values as type
class PenState(enum.Enum):
 UP = -1
 DOWN = 1

We also have a Tootle class, wrapping the existing python Turtle class.
It exposes the state as members of this class.

../01/tootle.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	# The usual OO inheritance interface
taking turtle.Turtle as an unknown black box.
We provide shortcuts to some of its methods and attributes here for interfacing with turtle,
while trying to keep the turtle API small.
class Tootle(turtle.Turtle):
 """
 Inheriting from provided Turtle class, OO style.
 >>> t = Tootle()

 """
 @property
 def position(self):
 return super().position() * ureg.pixel

 @property
 def angle(self):
 return super().heading() * ureg.degrees

 @property
 def penState(self):
 return super().pen().get('pendown')

 def move(self, distance: int):
 super().forward(distance=distance)

 def right(self, angle: int):
 super().right(angle * ureg.degrees)

 def left(self, angle: int):
 super().left(angle * ureg.degrees)

 def penup(self):
 super().penup()

 def pendown(self):
 super().pendown()

It also provides methods matching our API, that are used to mutate the state (via the python Turtle instance).

../01/tootle.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	# The usual OO inheritance interface
taking turtle.Turtle as an unknown black box.
We provide shortcuts to some of its methods and attributes here for interfacing with turtle,
while trying to keep the turtle API small.
class Tootle(turtle.Turtle):
 """
 Inheriting from provided Turtle class, OO style.
 >>> t = Tootle()

 """
 @property
 def position(self):
 return super().position() * ureg.pixel

 @property
 def angle(self):
 return super().heading() * ureg.degrees

 @property
 def penState(self):
 return super().pen().get('pendown')

 def move(self, distance: int):
 super().forward(distance=distance)

 def right(self, angle: int):
 super().right(angle * ureg.degrees)

 def left(self, angle: int):
 super().left(angle * ureg.degrees)

 def penup(self):
 super().penup()

 def pendown(self):
 super().pendown()

Notice also how the code uses docstrings and doctests to certify the documentation stays uptodate.

If you know python, this code should have no mystery for you.

Tootle test

Since we want our code to work, we need to test it.

First we do not want to display a graphical “TurtleScreen” everytime we run a test.
This is quite tricky to do, and for now we will rely on a monkey patch.
TODO

Then we define our test class, using the unittest core library

../01/test_tootle.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 since the inheritance mechanism uses the logic of the super class and related class hierarchies.
 Also any action with side effect will modify the environment, which we don't control by definition,
 by changing the start position of the turtle and will affect the following test, for example.

 What we can do however, is that our own code is using the rest of the code as expected, using a mock.
 The mock will prevent any side effect by intercepting any procedure call, and register counters,
 before it interferes with the outside world. but we need to investigate the superclass hierarchy to understand
 its behavior and relationship.This breaks the original encapsulation intent...

 Anyway, it is better than not testing, but this tests almost nothing.
 It will not test the whole behavior, and it doesn't scale to test integration of multiple components.
 It is also quite fragile with inheritance, as we have to plug our mock in the exact place, which can be quite hacky
 """

 @mock.patch('turtle.TurtleScreen', autospec=True)
 def setUp(self, mock_tscreen):
 self.t = tootle.Tootle()
 # TODO ... currently mock breaks the turtle...
 assert mock_tscreen.called_with()

 def check_move(self, dist: int):
 """
 Implements one check of move
 :param dist: the distance to move
 :return:
 """
 # get position before
 p0 = self.t.position

 # get position after
 p1 = self.t.position

 assert p1 - p0 == dist

 @mock.patch("turtle.Turtle.forward")
 def test_move(self, mockturtle):
 """ Testing multiple values of distance"""
 for d in [random.randint(0, self.max_test_dist) for _ in range(20)]:

You can notice how we have a few ‘check_’ functions that verify the behavior of a Turtle method for a specific parameter.

../01/test_tootle.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 since the inheritance mechanism uses the logic of the super class and related class hierarchies.
 Also any action with side effect will modify the environment, which we don't control by definition,
 by changing the start position of the turtle and will affect the following test, for example.

 What we can do however, is that our own code is using the rest of the code as expected, using a mock.
 The mock will prevent any side effect by intercepting any procedure call, and register counters,
 before it interferes with the outside world. but we need to investigate the superclass hierarchy to understand
 its behavior and relationship.This breaks the original encapsulation intent...

 Anyway, it is better than not testing, but this tests almost nothing.
 It will not test the whole behavior, and it doesn't scale to test integration of multiple components.
 It is also quite fragile with inheritance, as we have to plug our mock in the exact place, which can be quite hacky
 """

 @mock.patch('turtle.TurtleScreen', autospec=True)
 def setUp(self, mock_tscreen):
 self.t = tootle.Tootle()
 # TODO ... currently mock breaks the turtle...
 assert mock_tscreen.called_with()

 def check_move(self, dist: int):
 """
 Implements one check of move
 :param dist: the distance to move
 :return:
 """
 # get position before
 p0 = self.t.position

 # get position after
 p1 = self.t.position

 assert p1 - p0 == dist

 @mock.patch("turtle.Turtle.forward")
 def test_move(self, mockturtle):
 """ Testing multiple values of distance"""
 for d in [random.randint(0, self.max_test_dist) for _ in range(20)]:

Then we have a few ‘test_method’ that actually run these checks for a larger number of parameters.
It helps us have a better coverage of the data space.

../01/test_tootle.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	 since the inheritance mechanism uses the logic of the super class and related class hierarchies.
 Also any action with side effect will modify the environment, which we don't control by definition,
 by changing the start position of the turtle and will affect the following test, for example.

 What we can do however, is that our own code is using the rest of the code as expected, using a mock.
 The mock will prevent any side effect by intercepting any procedure call, and register counters,
 before it interferes with the outside world. but we need to investigate the superclass hierarchy to understand
 its behavior and relationship.This breaks the original encapsulation intent...

 Anyway, it is better than not testing, but this tests almost nothing.
 It will not test the whole behavior, and it doesn't scale to test integration of multiple components.
 It is also quite fragile with inheritance, as we have to plug our mock in the exact place, which can be quite hacky
 """

 @mock.patch('turtle.TurtleScreen', autospec=True)
 def setUp(self, mock_tscreen):
 self.t = tootle.Tootle()
 # TODO ... currently mock breaks the turtle...
 assert mock_tscreen.called_with()

 def check_move(self, dist: int):
 """
 Implements one check of move
 :param dist: the distance to move
 :return:
 """
 # get position before
 p0 = self.t.position

 # get position after
 p1 = self.t.position

 assert p1 - p0 == dist

 @mock.patch("turtle.Turtle.forward")
 def test_move(self, mockturtle):
 """ Testing multiple values of distance"""
 for d in [random.randint(0, self.max_test_dist) for _ in range(20)]:

Despite these efforts to test our turtle, there are many cases that we did not consider.
For example :
- We test only from the initial turtle state, but what if the method behavior depends on the turtle state ?
- We test only a very small set of possible values, what is the method behavior is different for some untested value ?
- How will be the behavior for “unexpected” inputs ? Will it crash ? throw and exception ? which one ? We do not test the unexpected (obviously)

These are the current limitation of basic python tests. We will attempt to improve our test coverage in the following chapters.

Conclusion

Pros:

	Familiar for most python programmers.

Cons :

	Stateful. Hard to test methods independently from the state.

	Inheritance effectively provides a blackbox, that can be hard to setup for tests.

	Cannot compose between method calls, we have to actually do one behavior at a time.

	Hard coded dependencies in module, the client needs to bring in everything.

API

Tootle API

Abstract Data Turtle

Data is separate from behaviour.

Data structure is mutable, private, and only the turtle functions can change the data
From hte caller point of view it is an opaque data structure

Each function needs the state to be passed in.

import turtle
import enum
import pint

ureg = pint.UnitRegistry()

Side Note: Yes, Python has enums !
class PenState(enum.Enum):
 UP = -1
 DOWN = 1

Simplest interface for clarity, but can only support one turtle.
We use this global as a way to simplify functions interface to keep clarity.
_abstle = None

Using class as data structure, for typing, and '_' as the usual python convention for "private".
Remember, Types were used before Object Oriented programming...
The usual OO delegation interface
taking turtle.Turtle as an unknown black box.
Composition, not inheritance.
class _TurtleState:
 """
 TurtleState is mutable and therefore private.
 """

 def __init__(self):
 self.update()

 def update(self):
 global _abstle

 """Update from the global abstle"""
 self.position = _abstle.position()
 self.angle = _abstle.heading()
 self.penState = _abstle.pen().get("pendown")

def create(supermodel=None):
 global _abstle
 _abstle = supermodel if supermodel is not None else turtle.Turtle()
 return _TurtleState()

def move(distance: int, state: _TurtleState):
 global _abstle

 # TMP HACK
 distance = int(distance)

 _abstle.forward(distance=distance)

 # This will mutate the state
 state.update()

def right(angle: int, state: _TurtleState):
 global _abstle

 # TMP HACK
 angle = int(angle * ureg.degrees)

 _abstle.right(angle)

 # This will mutate the state
 state.update()

def left(angle: int, state: _TurtleState):
 global _abstle

 # TMP HACK
 angle = int(angle)

 _abstle.left(angle)

 # This will mutate the state
 state.update()

def penup(state: _TurtleState):
 global _abstle
 _abstle.penup()
 # This will mutate the state
 state.update()

def pendown(state: _TurtleState):
 global _abstle
 _abstle.pendown()
 # This will mutate the state
 state.update()

Pros:

	simple to implement

	cant do inheritance -> forces composition

Cons:

	Stateful/Blackbox/hard to test

Pythonic

API

Abstle API

Functional Turtle

Data is immutable

Client has to create the state and pass it into a functio and get the new state back
-> The client is involved in managing the state

Functions now return the state, and can be composed !

Pythonic

Pure

API

Functle API

Overall

Pros:
- Immutability : easier to reason about
- Stateless: Easier to test
- Fcuntions are composable

Cons:
- client has to keep track fo the state
- Hardc oded dependencies

State Monad

State threading behind the scene.

Problem upgrade

Lets say the turtle cant go after a certain distance.
We need to return the distance actually moved.
-> Passing the state around is complex, and we can’t compose easily as before.

Currying

We transform the functions.
Instead of having one two params function, we get two, one-param, function.
We now say that the state is a wrapper around the function returned from a function.

Pythonic

Pure

Monadic

API

Montle API

Pros:
- looks imperatve but preserve immutability
- functions are still composable

Cons:
- harder to implement and use

Tootle API

	
class tootle.PenState

	An enumeration.

Abstle API

	
class abstle.PenState

	An enumeration.

Functle API

	
class functle.PenState

	An enumeration.

	
class functle.TurtleState

	Immutable public State.

	
angle

	Alias for field number 1

	
pen

	Alias for field number 2

	
position

	Alias for field number 0

	
functle.curry(fun)

	Curry the function : changes some parameters (the ones not passed at first) into a later function call.
Effectively splits one call into two.
>>> def add(a,b):
… return a + b
>>> addfirst = curry(add)
>>> andthen = addfirst(2)
>>> addthen(3)
5

	
functle.functle()

	A context in which a turtle is available, along with its state, and a functional application accumulator

	
functle.schoenfinkel(fun)

	Curry the function : changes some parameters (the ones not passed at first) into a later function call.
Effectively splits one call into two.
>>> def add(a,b):
… return a + b
>>> addfirst = curry(add)
>>> andthen = addfirst(2)
>>> addthen(3)
5

Montle API

	
class montle.PenState

	An enumeration.

	
class montle.TurtleImpl

	Basic class to hold implementation and state together
For simplicity sake

	
impl

	Alias for field number 1

	
state

	Alias for field number 0

	
class montle.TurtleState

	Immutable public State.

	
angle

	Alias for field number 1

	
pen

	Alias for field number 2

	
position

	Alias for field number 0

	
montle.curry(fun)

	Curry the function : changes some parameters (the ones not passed at first) into a later function call.
Effectively splits one call into two.
>>> def add(a,b):
… return a + b
>>> addfirst = curry(add)
>>> andthen = addfirst(2)
>>> addthen(3)
5

	
montle.montle() → TurtleImpl

	A context in which a turtle is available, as well as its state

	
montle.schoenfinkel(fun)

	Curry the function : changes some parameters (the ones not passed at first) into a later function call.
Effectively splits one call into two.
>>> def add(a,b):
… return a + b
>>> addfirst = curry(add)
>>> andthen = addfirst(2)
>>> addthen(3)
5

	
montle.uncurry(fun)

	Uncurry the function : changes some
:param fun:
:return:

 Python Module Index

 a |
 f |
 m |
 t

 		 	

 		
 a	

 	
 	
 abstle	

 		 	

 		
 f	

 	
 	
 functle	

 		 	

 		
 m	

 	
 	
 montle	

 		 	

 		
 t	

 	
 	
 tootle	

Index

 A
 | C
 | F
 | I
 | M
 | P
 | S
 | T
 | U

A

 	
 	abstle (module)

 	
 	angle (functle.TurtleState attribute)

 	(montle.TurtleState attribute)

C

 	
 	curry() (in module functle)

 	(in module montle)

F

 	
 	functle (module)

 	
 	functle() (in module functle)

I

 	
 	impl (montle.TurtleImpl attribute)

M

 	
 	montle (module)

 	
 	montle() (in module montle)

P

 	
 	pen (functle.TurtleState attribute)

 	(montle.TurtleState attribute)

 	PenState (class in abstle)

 	(class in functle)

 	(class in montle)

 	(class in tootle)

 	
 	position (functle.TurtleState attribute)

 	(montle.TurtleState attribute)

S

 	
 	schoenfinkel() (in module functle)

 	(in module montle)

 	
 	state (montle.TurtleImpl attribute)

T

 	
 	tootle (module)

 	TurtleImpl (class in montle)

 	
 	TurtleState (class in functle)

 	(class in montle)

U

 	
 	uncurry() (in module montle)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Caerbannog’s !

 		
 Object Oriented Turtle

 		
 Client code

 		
 Tootle code

 		
 Tootle test

 		
 Conclusion

 		
 API

 		
 Abstract Data Turtle

 		
 Pythonic

 		
 API

 		
 Functional Turtle

 		
 Pythonic

 		
 Pure

 		
 API

 		
 Overall

 		
 State Monad

 		
 Problem upgrade

 		
 Currying

 		
 Pythonic

 		
 Pure

 		
 Monadic

 		
 API

 		
 Tootle API

 		
 Abstle API

 		
 Functle API

 		
 Montle API

_static/up-pressed.png

_static/up.png

_static/plus.png

